S6 PHYSICS

Paper 1 REVISION QUESTIONS

INSTRUCTIONS:

Attempt **FIVE**questions Assume where necessary.

 $= 9.81 \text{ ms}^{-2}$ Acceleration due to gravity, g Mass of the earth $= 5.97 \times 10^{24} \text{ kg}$ Planck's constant, h $= 6.6 \times 10^{-34} \text{Js}$ $= 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ Stefan's Boltzmann's constant, σ $= 2.9 \times 10^{-3} \text{ m K}$ Wien's displacement constant Radius of Earth's orbit about the sun = $1.5 \times 10^{11} \,\mathrm{m}$ $= 7.0 \times 10^8 \text{ m}$ Radius of the sun Specific heat capacity of water $= 4.2 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$ Specific latent heat of fusion of water = 3.34 x 10⁵ J kg⁻¹ Specific latent heat of vaporization of water =2.26 x 10⁶ J kg⁻¹ Specific heat capacity of copper $= 400 \text{ J kg}^{-1} \text{ K}^{-1}$ $= 6.02 \times 10^{23} \text{ mol}^{-1}$ Avogadro's number, N_A Density of water $= 1000 \text{ kg m}^{-3}$ $= 8.31 \text{ J mol}^{-1}\text{K}^{-1}$ Gas constant, R

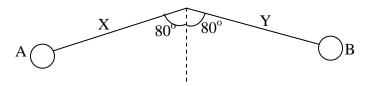
SECTION A

1. (a) A particle is projected vertically upwards from the top of a tree and attains the maximum height after 2s. For the first 5s sketch:

(i) thedisplacement-time graph	(1)
(ii) thevelocity-time graph	(1)

(b) The distance between two stations is 1800m. An electric train, which covers this journey in 3 minutes, starts from rest at one station with a uniform acceleration of 0.5 ms⁻². It comes to rest at the other station with a uniform retardation of 0.75 ms⁻² and the speed in the intermediate portion of its journey is constant. Find

- (i) the time taken during acceleration (5)
- (ii) the maximum constant speed attained (2)
- (c) (i) State the principle of conservation of momentum (1)
- (ii) Show how Newton's laws of motion may be used to arrive at the principle

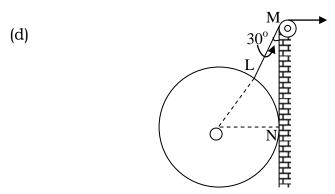

of conservation of momentum.

(5)

- (d) A ball of mass 0.2kg is released from a height h above the ground and on hitting the ground the ball bounces off to a height of 3.0m after losing 70% of its mechanical energy.
- (i) With what velocity does the ball bounce off the ground? (2)
- (ii) Find the height h from which the ball was released. (3)

If the ground exerted a force of 43.0N on the ball, how long was the ball in contact with the ground before bouncing off? (3)

- 2. (a) (i) State the work-energy principle. (1)
 - (b) (i) Define gravitational potential. (1)
- (ii) If r is the radius of the earth and g the gravitational acceleration, show that the gravitational potential at the earth's surface is -gr. (3)
- (c) The diagram shows two balls A and B supported by strings X and Y respectively, each of length 1 m.


The balls are held so that the strings are taut and each makes an angle of 80°with the vertical, all in the same vertical plane. A has a mass of 300g and B of 200 g.

The balls are released. If the coefficient of restitution is 0.6, find

- (i) the mechanical energy lost during collision (8)
- (ii) the angle string Y makes with the vertical when B first comes to instantaneous rest. (3)
- 3. (a) (i) Distinguish between kinetic energy and potential energy (2)
- (ii) Show that a mass m moving with a velocity v has kinetic energy given by $\frac{1}{2}$ mv². (3)
 - (b) (i) What is meant by the term **conservative force**? (1)
- (ii) Show that for a particle moving in the gravitational field the total mechanical energy is conserved. (4)
 - (c) (i) Define the **moment of a force**. (1)

(ii) The inner end of a concentrically coiled spring is fixed to the axle of a wheel of radius 0.5 m. When two tangential parallel forces, each of 6N acting in opposite directions, are applied to the wheel to form a couple, the wheel turns through an angle of 120°.

Find the energy stored in the spring. (3)

The figure shows a uniform circular hoop with centre O and of radius 0.5 m. The hoop has aweight of 200 N and is being hauled up along a verticalwall ported by astring LM fixed at point L on the hoop.LM makes an angle of 30° with the wall andthe angle between radii OL and ON is 40°. Find the

- (i) tension in the string LM. (3)
- (ii) coefficient friction between the hoop and the wall. (4)
- 4. (a) (i) Define simple harmonic motion. (1)
- (ii) A particle performs simple harmonic motion with amplitude \mathbf{a} and angular frequency, $\mathbf{\omega}$. Derive an expression relating the velocity of the particle and its displacement \mathbf{x} , without the time. (3)
- (b) (i) Show that a small mass attached to the free end of a suspended inextensible string, executes simple harmonic motion when displaced through a small angle and then released. (4)
- (ii) Explain briefly how you can use the experimental arrangement in (b)(i) above to determine acceleration due to gravity. (5)
- (c) A particle of mass 0.1 kg is executing simple harmonic motion of amplitude $3.6 \times 10^{-2} \text{m}$ between two points A and B about point O as the centre of oscillation. The maximum restoring force on the particle has a magnitude 3.52 N.Calculate
 - (i) the period of the motion (2)
- (ii) the kinetic energy of the particle at a point in the path of the motion a distance 4.5×10^{-2} m from A. (3)
 - (iii) the total energy of the particle (2)

SECTION B

5. (a) (i) State any two factors that could be considered when choosing thermometer to be used.(ii) State four characteristics a physical property should exhibit in	(1)
order to be used as a thermometric property.	(2)
(b) What is meant by a	
(i) fixed point in thermometry	(1)
(ii) triple point of water	(1)
(c) (i) Describe the structure of a liquid in glass clinical thermometer (ii) State how the thermometer in (b)(i) can be made sensitive and	d
quick acting.	(2)
(d) At a temperature of 90°C the resistance of a platinum wire is 2	.000
Ω . What will the resistance be at the triple point of water?	(3)
(e) (i) What is meant by pyrometry?	(1)
(ii) With the aid of a diagram describe how an optical pyrometer	•
be used to measure the temperature of furnace.	(5)
6. (a) (i) Define specific latent heat of vaporisation.	(1)
(ii) Explain why at the boiling point of a liquid heat is absorbed	
(ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature.	(1)(2)
(ii) Explain why at the boiling point of a liquid heat is absorbed	(2)
(ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature.(iii) With the aid of a well labelled diagram, describe an electrical	(2)
(ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature. (iii) With the aid of a well labelled diagram, describe an electrical method of determining the specific latent heat of vaporisation of water (b) A 1.0kW electric heater is immersed in 4 kg of water at 25°C con in a copper vessel of mass 0.5 kg. Neglecting any loss of heat to the	(2) c.(7) ntained
(ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature. (iii) With the aid of a well labelled diagram, describe an electrical method of determining the specific latent heat of vaporisation of water (b) A 1.0kW electric heater is immersed in 4 kg of water at 25°C comin a copper vessel of mass 0.5 kg. Neglecting any loss of heat to the surroundings and the heat capacity of the heater, find:	(2) 7.(7) ntained 00°C (3) C?
 (ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature. (iii) With the aid of a well labelled diagram, describe an electrical method of determining the specific latent heat of vaporisation of water (b) A 1.0kW electric heater is immersed in 4 kg of water at 25°C continuous acopper vessel of mass 0.5 kg. Neglecting any loss of heat to the surroundings and the heat capacity of the heater, find: (i) how long it will take to heat the water to its boiling point of 10 (ii) how long it will take to boil off all the water, starting from 25° 	(2) c.(7) ntained 00°C (3) C? (2)
(ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature. (iii) With the aid of a well labelled diagram, describe an electrical method of determining the specific latent heat of vaporisation of water (b) A 1.0kW electric heater is immersed in 4 kg of water at 25°C comin a copper vessel of mass 0.5 kg. Neglecting any loss of heat to the surroundings and the heat capacity of the heater, find: (i) how long it will take to heat the water to its boiling point of 10	(2) c.(7) ntained 00°C (3) C? (2)
 (ii) Explain why at the boiling point of a liquid heat is absorbed without change of temperature. (iii) With the aid of a well labelled diagram, describe an electrical method of determining the specific latent heat of vaporisation of water (b) A 1.0kW electric heater is immersed in 4 kg of water at 25°C continuous acopper vessel of mass 0.5 kg. Neglecting any loss of heat to the surroundings and the heat capacity of the heater, find: (i) how long it will take to heat the water to its boiling point of 10 (ii) how long it will take to boil off all the water, starting from 25° 	(2) c.(7) ntained 00°C (3) C? (2) 5.00? (2)

7. (a) (i) Draw sketch graphs to show the variation of relative intensity of black body radiation with wavelength for three different temperatures. (2)

- (ii) Explain the appearance of a metal ball placed in a dark room when its temperature is progressively raised from room temperature to just below melting. (3)
 - (iii) Explain why cavities in a fire look brighter than the rest of the fire.
 (3)
 - (b) (i) State Wien's and Stefan's laws of black body radiation. (1)
- (ii) The intensity of radiant energy from a black body is a maximum at a wavelength of 1.5 x 10^{-6} m. Calculate the temperature of the black body.
- (iii) Describe an experiment to compare surfaces as absorbers of radiation. (4)
- (c) The energy intensity received by a spherical planet from a star is 1.4×10^3 W m⁻². The star is of radius 7.0×10^5 km and is 1.4×10^8 km from the planet from the planet.
 - (i) Calculate the surface temperature of the star. (4)

(2)

(ii) State any assumptions you have made in (b)(i) above. (1)